Metastability exchange optical pumping in 3He gas up to 30 mT: Efficiency measurements and evidence of laser-induced relaxation

PhD defence Marion Batz, July 8th, 2011
Applications of hyperpolarised 3He

- hyperpolarisation = nuclear polarisation M enhanced relative to thermal equilibrium ($\propto B/T$, $\sim 10^{-9}$ @ mT, 300 K)

3He: $l = \frac{1}{2}$

$$M = \frac{\frac{N^+}{g} - \frac{N^-}{g}}{N_g}$$
Applications of hyperpolarised 3He

- **hyperpolarisation** = nuclear polarisation M **enhanced** relative to thermal equilibrium ($\propto B/T$, $\sim 10^{-9}$ @ mT, 300 K)
- **hyperpolarised 3He**: versatile **tool** in different fields of **fundamental physics** and **biomedical science**
- Examples of **applications**:
 - **spin filters** for polarising neutrons
 - **scattering targets** for investigations of the **structure of nucleons**
 - **nuclear precession magnetometers** e.g., to probe **fundamental symmetries** (Lorentz and CPT violation), to search for **permanent EDM**
 - **investigations of nonlinear NMR dynamics** in **hyperpolarised liquid 3He**
 - **magnetic resonance imaging (MRI)** of the lung in humans and in animals with inhaled gas

3He: $I = \frac{1}{2}$

![Hyperpolarised 3He](image1)

- **healthy**
- **lung transplant patient – 3D**
- **asthma**

Duke
Mainz
Virginia Univ.
Motivation

- **Goal**: contribute to understanding of current limitations of 3He MEOP to ultimately overcome them and achieve highest possible polarisation.

- Especially for applications in fundamental physics: high nuclear polarisation M is crucial.
Motivation

- **Goal:** contribute to understanding of current limitations of 3He MEOP to ultimately overcome them and achieve highest possible polarisation

- Especially for applications in fundamental physics: high nuclear polarisation M is crucial: figures of merit vary non-linearly with M!

 - **Spin filters for neutrons:**
 \[
 \text{transmission} \propto \cosh(\Omega M) \\
 \text{neutron polarisation} \propto \tanh(\Omega M)
 \]
 (Ω: filter opacity)

 - **Scattering targets:**
 \[
 \text{figure of merit} \propto M^2 \\
 \text{measurement time} \propto 1/M^2
 \]

 e.g., reduction of beam time by a factor of 2 by increasing M from 0.5 to 0.7 (to obtain data with given statistical uncertainty)

 Lelièvre-Berna *et al.* (2007)

 Krimmer *et al.* (2009)
Motivation

- **Goal:** contribute to *understanding of current limitations of 3He MEOP* to ultimately overcome them and achieve highest possible polarisation.

- Especially for applications in fundamental physics: high nuclear polarisation M is crucial: figures of merit vary *non-linearly* with M!

 - **Spin filters for neutrons:**
 - transmission $\propto \cosh(\Omega M)$
 - neutron polarisation $\propto \tanh(\Omega M)$

 - **Scattering targets:**
 - figure of merit $\propto M^2$
 - measurement time $\propto 1/M^2$
 - e.g., reduction of beam time by a factor of 2 by increasing M from 0.5 to 0.7 (to obtain data with given statistical uncertainty)

- For applications in MRI:
 - increase *polarisation and production rate* for higher throughput.
Specificities of ^3He Metastability Exchange Optical Pumping (MEOP)

MEOP in moderate magnetic fields $B \leq 30$ mT

Experimental Setup and measurement of nuclear polarisation

Effect of magnetic field on plasma and OP performances

Global angular momentum budget approach

Laser-induced relaxation

Discussion: Physical process possibly involved?

Summary and Outlook
Specificities of OP in 3He:

- OP *not* performed from ground state: populate metastable $^2^3S$ state by rf discharge ($n_m/N_g \approx 1$ ppm)

- OP on $^2^3S$-$^2^3P$ transition (1083 nm): usually on C_8 or C_9 line; strong hyperfine interaction in $^2^3S$ and $^2^3P$: nuclear and electronic spin states simultaneously oriented

- Transfer of *nuclear* orientation from $^2^3S$ to ground state by metastability exchange collisions
Metastability exchange (ME) collisions

- involve 1 ground state (g.s.) atom + 1 2^3S_1 atom
- swap spin states of atoms
- preserve total spin
Metastability exchange (ME) collisions

- involve 1 ground state (g.s.) atom + 1 2^3S_1 atom
- swap spin states of atoms
- preserve total spin

Consequences:
- ground state:
 evolution of g.s. nuclear polarisation is governed by 2^3S polarisation $M^* = 2 <I_z>* / \hbar$

- metastable state:
 spin temperature distribution enforced in 2^3S (without OP) → used for absolute measurement of M by 2 complementary light absorption rates, measured by weak probe laser beams

Rate γ_e
3.8×10^6 s$^{-1}$ / mbar

Nuclear spin in g.s. and total spin in 2^3S strongly coupled

$M^* > M$ with OP

\[
\frac{dM}{dt} = \gamma_e \left(\frac{2 \langle I_z \rangle^*}{\hbar} - M \right) - \Gamma_R M
\]

metastability exchange relaxation
MEOP in moderate magnetic fields (≤ 30 mT)

Effects of moderate magnetic field:

- Structure of sublevels in 2^3S and 2^3P and transitions unaffected
- In 2^3S and 2^3P: hf-coupling unaffected below 0.1 T ($A_{\text{HFS}} \approx 4400$ MHz)
MEOP in moderate magnetic fields (≤ 30 mT)

Effects of moderate magnetic field:

- Structure of sublevels in 2^3S and 2^3P and transitions unaffected
- In 2^3S and 2^3P: hf-coupling unaffected below 0.1 T ($A_{\text{HFS}} \approx 4400 \text{ MHz}$)
- Above 10 mT: In higher exited states: hf-decoupling ($A_{\text{HFS}} (3^1D): 136 \text{ MHz}$)

Angular momentum loss reduced in the cascade

Expected to yield higher OP performances

\[R = \frac{\text{circular polarisation of 668 nm-line (3}^1\text{D}_2 \rightarrow 2^1\text{P}_1)}{\text{g.s. nuclear polarisation}} \]
Structure of talk

- Specificities of 3He Metastability Exchange Optical Pumping (MEOP)
- MEOP in moderate magnetic fields $B \leq 30$ mT

- Experimental Setup and measurement of nuclear polarisation
- Effect of magnetic field on plasma and OP performances
- Global angular momentum budget approach
- Laser-induced relaxation

- Discussion: Physical process possibly involved?
- Summary and Outlook
Experimental setup

Plasma in cell produced by rf discharge:

Magnetic field (0-30 mT) produced by solenoid:
Al bore cylinder and edge flasks with water cooling (constructed at Mainz University)
uniform B over OP cells (30 cm):
\[T_{f,magn} \approx 435 \text{ h (@ 1 mbar)} \]

Electrode configuration optimised to obtain large range of plasma conditions

Pump laser:
broadband fibre laser (5 W, 1.7 GHz FWHM)

Probe laser:
fibre-coupled single-frequency DBR diode
- Double pass configuration with back-reflecting high quality mirror to increase absorption
- Gaussian pump beam, circularly polarised, expanded to 1.4 cm FWHM diameter
- Weak probe beam: two adjacent beams with opposite circular polarisations
- Double modulation scheme for high SNR
Measurement of nuclear polarisation

ME collisions tend to enforce a **spin-temperature distribution** in 2^3S, ruled by 1^1S nuclear polarisation M:

$$a \frac{(m_F + 1)}{a \ (m_F)} = e^{\beta} = \frac{N_+}{N_-} = \frac{1 + M}{1 - M}$$

1/β: spin temperature

a_i: relative population of 2^3S sublevel A_i

![Diagram](image)

<table>
<thead>
<tr>
<th>m_F</th>
<th>2^3S_1, $F=1/2$</th>
<th>2^3S_0, $F=1/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1/2</td>
<td>A_1</td>
<td>A_1</td>
</tr>
<tr>
<td>1/2</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>x^2</td>
<td>x^2</td>
</tr>
<tr>
<td>1</td>
<td>x^3</td>
<td>x^3</td>
</tr>
</tbody>
</table>

Two absorption rates measured:

- σ^+
- σ^-

→ **populations** and n_m

Infer M from the two selectively probed populations

Systematic tests: Method is reliable for the study of OP dynamics even with redistribution of populations by OP light
Important measured quantities

Nuclear polarisation AND pump transmission continuously monitored

Typical SNR: pump: 5-35 depending on τ_{LIA}
probe: 500-1000 in presence of pump laser; 10000 without pump laser

Absorbed pump laser power can be inferred at all times:
$W_{\text{abs}} = (1 - T_p) W_{\text{inc}}$

Monoexponential decay: $\Gamma_R = \text{cst.} = \Gamma_D$
$\Gamma_D^{-1}: 1 \rightarrow 1000 \text{ s, depending on plasma conditions}$
Effect of magnetic field on plasma

1 mT results

\[n_m^S(0) \left[10^{16} \text{ at/m}^3 \right] \]

\[\Gamma_D \left[\text{s}^{-1} \right] \]

\[N_g \approx 10^{22} \text{ at/m}^3 @ 1 \text{ mbar} \]
Effect of magnetic field on plasma

Significant increase / decrease of Γ_D at fixed n_m in $B = 30$ mT

$N_g \approx 10^{22}$ at/m3 @ 1 mbar
Effect of magnetic field on OP performances

OP at fixed pump laser power

M_{eq} vs $n_m^S(M=0) \times 10^{16} \text{ at/m}^3$

- OP 1.66 W
- C8
- C9
- Open: 1 mT
- 0.63 mbar
- 2.45 mbar
Effect of magnetic field on OP performances

Steady state polarisation in 30 mT:
NOT significantly improved
Effect of magnetic field on OP performances

- Steady state polarisation in 30 mT: NOT significantly improved
Steady state polarisation in 30 mT: NOT significantly improved

Rate of change dM/dt at $M=0$ as function of absorbed pump laser power at $M=0$: identical behaviour at $B=1$ and 30 mT
Effect of magnetic field on OP performances

- Steady state polarisation in 30 mT: NOT significantly improved
- Rate of change dM/dt at $M=0$ as function of absorbed pump laser power at $M=0$: identical behaviour at $B=1$ and 30 mT
- NEW different way to investigate involved MEOP processes required

although decay rates Γ_D are modified: APPARENT PARADOX
Global angular momentum budget approach - I

global budget: growth rate = gain - loss

ME collisions: angular momentum conserved
Global angular momentum budget approach - II

Balance of angular momentum for ground state atoms

\[
\frac{dM}{dt} = 2\eta \frac{W_{abs}}{\hbar \omega} \frac{1}{N_g V_c} - \Gamma_R \left(M \right)
\]

- \(\eta \): photon efficiency
- \(\Gamma_R \): global polarisation loss rate \((M \neq 0)\)

may vary with \(M \) and MEOP conditions

- deposited orientation per absorbed photon
- number of absorbed photons per unit time
- number of atoms

measured quantities
Photon efficiency - I

Definition of photon efficiency (PE) η: net change of atomic angular momentum projection m_F in the 2^3S state, upon absorption and emission of a photon

η (at given transition) depends on the degree of collisional mixing in 2^3P:
Photon efficiency - I

Definition of photon efficiency (PE) \(\eta \): net change of atomic angular momentum projection \(m_F \) in the \(2^3S \) state, upon absorption and emission of a photon.

\(\eta \) (at given transition) depends on the degree of collisional mixing in \(2^3P \):

Kastler OP regime
no collisional redistribution
low pressure

\[\eta^{K_{C8}} \approx 0.9 \]
Photon efficiency - I

Definition of photon efficiency (PE) η: net change of atomic angular momentum projection m_F in the 2^3S state, upon absorption and emission of a photon

η (at given transition) depends on the degree of collisional mixing in 2^3P:

<table>
<thead>
<tr>
<th>Kastler OP regime</th>
<th>Dehmelt OP regime</th>
</tr>
</thead>
<tbody>
<tr>
<td>no collisional redistribution</td>
<td>full collisional redistribution between all 18 sublevels in 2^3P</td>
</tr>
<tr>
<td>low pressure</td>
<td>high pressure</td>
</tr>
</tbody>
</table>

Emissied/scattered light globally unpolarized

$\eta^K_{C8} \approx 0.9$

$\eta^D_{C8} = 0.5$
Photon efficiency - II

Dependencies

<table>
<thead>
<tr>
<th></th>
<th>η_{C_8}</th>
<th>η_{C_9}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>W</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>pressure</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

$M=0, B=0, W_{inc} \rightarrow 0$

Radiative lifetime of 2^3P

$\tau_P [s]$ vs M for C_9 and C_8

- $C_9(M=0)$
- $C_9(M=0.5)$
- $C_9(M=0.8)$
- $C_9(M=0.995)$
- C_8 (all M)

Dehmelt
- $1.25E-7$ to $5E-7$ s
- 2.45 mbar

Kastler
- 0.63 mbar
Inferring total polarisation loss rates Γ_R

C_9: photon efficiency NOT constant

\rightarrow use MEOP model to compute η and infer polarisation loss rates

C_8: direct use of balance of angular momentum with measured η

- at $M=0$: relaxation loss vanishes: $-\Gamma_R M = 0$
 photon efficiency η can be directly measured

- at M_{eq}: rate of change $dM/dt = 0$

- during polarisation build-up, total polarisation loss rates Γ_R can be inferred dynamically from the full equation at all times

\[\frac{dM}{dt} = 2\eta \frac{W_{abs}}{\hbar \omega} \frac{1}{N_g V_c} - \Gamma_R M \]

\[\eta = \frac{1}{2} \frac{dM}{dt} (0) \frac{N_g V_c \hbar \omega}{W_{abs} (0)} \]

\[\Gamma_R (M_{eq}) = \frac{W_{abs} (M_{eq})}{W_{abs} (0)} \frac{dM}{dt} (0) \frac{M_{eq}}{M_{eq}} \]

faster relaxation \quad lower M_{eq} \quad smaller dM/dt
Laser-induced relaxation - I (C₈ transition)

C₈ data: angular momentum budget approach

\[\Gamma_R [s^{-1}] \]

\[\Gamma_D \]

\[W_{abs} [W] \]

\[W_{inc} [W] \]

\[W_{abs} (M_{eq}) [W] \]
Compilation of C_8 data, $B=1$ mT: Γ_L inferred from directly measured quantities only, using angular momentum budget approach.

Consistent set of data obtained when plotted as function of W_{abs}:

$$\Gamma_L \propto W_{\text{abs}}$$

Laser-induced relaxation rates exceed those measured in the plasma by up to two orders in magnitude in our experimental conditions.

Additional laser-induced loss rate

$$\Gamma_L = \Gamma_R - \Gamma_D$$
Systematic discrepancies (observed for C₈ and C₉ pumping) \(\rightarrow \) polarisation losses are STRONGLY underestimated during build-ups

IMPOSSIBLE to further increase steady-state polarisation (\(\rightarrow \) plateau) by further increasing pump laser power

\[
M_{eq} \propto \eta \frac{W_{abs}}{\Gamma_R}
\]
Laser-induced relaxation – III (C_9 transition)

Γ_L inferred using OP model (data at M_{eq} only)
Laser-induced relaxation – III (C$_9$ transition)

- Γ_L inferred using OP model (data at M_{eq} only)
- For identical plasma conditions: comparable effect both for C$_8$ and C$_9$ pumping lines
Laser-induced relaxation – III (C\textsubscript{9} transition)

- \(\Gamma_L \) inferred using OP model (data at \(M_{eq} \) only)
- For identical plasma conditions: comparable effect both for C\textsubscript{8} and C\textsubscript{9} pumping lines
- Strong discharge: good agreement with commonly observed proportional behaviour of \(\Gamma_L \) with respect to \(W_{abs} \)
- \(\Gamma_L \) still exceeds \(\Gamma_D \) by up to one order in magnitude

\[\begin{aligned}
\text{2.45 mbar, } B=1 \text{ mT}
\end{aligned} \]
Laser-induced relaxation – IV ($B = 1$ and 30 mT)

- Come back to astonishing observations at $B=30$ mT:
 - NO increase of M_{eq} and
 - NO change of dM/dt
Laser-induced relaxation – IV ($B = 1$ and 30 mT)

- Come back to astonishing observations at $B=30$ mT: NO increase of M_{eq} and NO change of dM/dt although decay rates Γ_D are reduced.
Laser-induced relaxation – IV ($B = 1$ and 30 mT)

- Come back to astonishing observations at $B=30 \text{ mT}$: NO increase of M_{eq} and NO change of dM/dt although decay rates Γ_D are reduced.

- Same consistent behaviour of Γ_L observed (build-up dynamics and at M_{eq}), independently of magnetic field B.

- Clarification: only at very small incident pump laser powers, Γ_D basically determines obtainable M_{eq}; at higher W_{inc} (= relevant cases in practice), Γ_D is NOT the pertinent parameter limiting M_{eq}; but Γ_L.

\[\begin{align*}
\Gamma_L [s^{-1}] & \quad \Gamma_D (1 \text{ mT}) \\
W_{abs} [W] & \quad \Gamma_D (30 \text{ mT}) \\
2.45 \text{ mbar, OP C8} & \\
\text{filled: } 30 \text{ mT} & \quad \text{open: } 1 \text{ mT}
\end{align*} \]
Laser-induced relaxation - VI (different works)

\[\Gamma_L \text{ [s}^{-1}] \]

low \(B \) (1-3 mT)

- ○ 2.45 mbar

this work

- \(\Gamma_D \)

\[\frac{W_{abs}}{V_c} \text{ [W/cm}^3] \]

30 cm x 6 cm
Laser-induced relaxation - VI (different works)

\[I_L [s^{-1}] \]

\[W_{abs} / V_c [W/cm^3] \]

Abboud 2005

Abboud 2005

5 cm x 5 cm
Laser-induced relaxation - VI (different works)

low \(B \): consistent overall qualitative behaviour:

\[W_{\text{abs}} \text{ per unit volume} \propto \text{laser-induced relaxation} \]

low \(B \), high pressure data:
- extend range of \(W_{\text{abs}} / V_c \) considerably
- in good agreement with all other data

\[1E-7 \quad 1E-6 \quad 1E-5 \quad 1E-4 \quad 0.01 \quad 0.1 \]
\[1E-4 \]
\[\Gamma_L [s^{-1}] \]
\[W_{\text{abs}} / V_c [W/cm^3] \]

Glowacz 2011
strong dc
weak dc

In collaboration with:

Laser-induced relaxation - VI (different works)

Ubiquitous phenomenon: observation of similar effects in other MEOP experiments as well.

- high B: at fixed W_{abs} / V_c
 - Γ_L smaller than in low B
 - high M_{eq} values can be recovered
- non negligible: Γ_L at least of order Γ_D as well
Structure of talk

- Specificities of 3He Metastability Exchange Optical Pumping (MEOP)
- MEOP in moderate magnetic fields $B \leq 30$ mT

- Experimental Setup and measurement of nuclear polarisation
- Effect of magnetic field on plasma and OP performances
- Global angular momentum budget approach
- Laser-induced relaxation

- Discussion: Physical process possibly involved?
- Summary and Outlook
Discussion – I (radiation trapping)

Physical processes possibly causing OP-enhanced relaxation - I

Radiation trapping: light resulting from spontaneous emission from the 2^3P state (not σ^+ polarised) might be absorbed by metastable atoms in 2^3S before exiting the cell

Main expected features of additional reabsorption-induced loss rates:

✔ should scale with W_{abs}/V_c

✗ should strongly decrease at high M

✗ very small quantitative impact on M_{eq} values expected

✗ should scale as n_m/p_3

{Eckert et al. (1992)}
Discussion – I (radiation trapping)

Physical processes possibly causing OP-enhanced relaxation - I

Radiation trapping: light resulting from spontaneous emission from the 2^3P state (not σ^+ polarised) might be absorbed by metastable atoms in 2^3S before exiting the cell

Main expected features of additional reabsorption-induced loss rates:

✓ should scale with W_{abs}/V_c
✗ should strongly decrease at high M
✗ very small quantitative impact on M_{eq} values expected
✗ should scale as n_m/p_3

Eckert et al. (1992)

\[
\frac{\Gamma}{W_{abs}} V_c \quad \text{[10}^{\text{-3} \text{ s}^{-1} \text{ W}^{-1}]}
\]

Ratio of polarisation loss rate to absorbed pump power, scaled to cell volume at M_{eq} as function of metastable density:

- data are clearly not proportional to n_m; in spite of scatter: mild increase with n_m
- observed to weakly decrease with gas pressure, excludes $1/p_3$ scaling
Discussion – II (plasma “poisoning” e.g., by He₂*)

Physical processes possibly causing OP-enhanced relaxation - II

- **Light-enhanced creation of long-lived relaxing species through 2³P state:** e.g., metastable molecules He₂⁺ formed in 3-body collisions

 \[\text{O} + \text{O} + \text{He} \rightarrow \text{He}_2 + \text{O} \]

 \[\sigma \text{ from } 2^3P = 100 \times \sigma \text{ from } 2^3S \]

- **Relaxation through spin exchange?**
 and fast **dissipation** of nuclear angular momentum in **molecular internal degrees of freedom** (numerous rotational states)
Light-enhanced creation of long-lived relaxing species through 2^3P state: e.g., metastable molecules He_2^* formed in 3-body collisions

σ from $2^3P = 100 \times \sigma$ from 2^3S

Relaxation through spin exchange?
and fast dissipation of nuclear angular momentum in molecular internal degrees of freedom (numerous rotational states)

To account for our observations: I_L should be proportional to molecular density:

- formation scales with W_{abs}/V_c (through 2^3P state density)
- formation scales with p_3^2 (through 1^1S state density)
- slower decay at higher pressure: diffusion rate $\propto 1/p_3$
- should decrease with increasing n_m (Penning collisions)

Measurements of laser-induced enhancement of molecular density: grossly insufficient to explain huge loss rates observed in low field and low pressure MEOP
Summary

- Observations in $B \leq 30 \text{ mT}$: polarisation decay rates Γ_D modified in plasma, but OP performances not improved at high laser powers W_{inc}

 → apparent paradox clarified:
 - at low W_{inc}: Γ_D basically determines obtainable steady state polarisation M_{eq}
 - at higher W_{inc}: Γ_D is NOT the pertinent parameter limiting M_{eq}
Summary

- **Observations in $B \leq 30$ mT**: polarisation decay rates Γ_D modified in plasma, but OP performances **not** improved at high laser powers W_{inc}
 - apparent paradox clarified:
 - at low W_{inc}: Γ_D basically **determines obtainable** steady state polarisation M_{eq}
 - at higher W_{inc}: Γ_D is **NOT** the pertinent parameter limiting M_{eq}

- Clear evidence of additional OP-induced relaxation effects:
 - NEW approach: balance of gains and losses in terms of angular momentum
 - efficiency of MEOP process measured in terms of absorbed pump laser power
Observations in $B \leq 30$ mT: polarisation decay rates Γ_D modified in plasma, but OP performances not improved at high laser powers W_{inc}

→ apparent paradox clarified:
 at low W_{inc}: Γ_D basically determines obtainable steady state polarisation M_{eq}
 at higher W_{inc}: Γ_D is NOT the pertinent parameter limiting M_{eq}

Clear evidence of additional OP-induced relaxation effects:
NEW approach: balance of gains and losses in terms of angular momentum
→ efficiency of MEOP process measured in terms of absorbed pump laser power

Main observed features of additional loss rates Γ_L:
- **linear scaling** with W_{abs}/V_c
- exceed decay rates Γ_D by up to **two orders in magnitude**
Perspectives

- **Physical processes** causing OP-enhanced relaxation effects remain to be elucidated.
- **Further investigations** needed: e.g., at higher pressure and higher magnetic field: sublevel structure and transitions change.
- **Online monitoring of absorbed pump laser power** via pump transmission coefficient is essential.
Perspectives

- **Physical processes** causing OP-enhanced relaxation effects remain to be elucidated.

- **Further investigations** needed: e.g., at higher pressure and higher magnetic field: sublevel structure and transitions change.

- **Online monitoring of absorbed pump laser power** via pump transmission coefficient is essential.

- **Reducing and ultimately eliminating** this source of relaxation would increase MEOP performances, possibility to increase polarisation and production rates of polariser units (low and high magnetic field).

Low B polariser, Mainz

High B polariser, Kraków, G. Collier (2011)
He plasma gallery (from Grenoble, Mainz, Paris, Vancouver)

Merci à tous ! Herzlichen Dank !
References

[1] Final revised version of PhD thesis manuscript will be available online at http://tel.archives.ouvertes.fr and http://archimedes.uni-mainz.de (from October 2011 on)
[16] B. Głowacz, ongoing PhD thesis, LKB and Jagiellonian University Kraków (Γ_L high pressure and low field, measurements of laser-induced enhancement of molecular density)
[17] G. Collier, ongoing PhD thesis, Jagiellonian University Kraków (Γ_L high field and high pressure)